

Characterising spatio-temporal variability in hydrodynamic connectivity and its contribution to benthic species distributions

(1) Rade de Brest / Mer d'Iroise(2) Manche / Golfe de Gascogne

Martin Marzloff IFREMER, DYNECO-LEBCO, 29280 Plouzané

I - Characterising spatio-temporal variability in hydrodynamic connectivity and its contribution to benthic species distributions in the Bay of Brest and Iroise Sea (France)

Philippe Cugier, Martin Marzloff IFREMER, DYNECO-LEBCO, 29280 Plouzané

AMEDEE, Nantes, Oct. 2019 – (presentation adapted from iMarCo2019)

Benthic invertebrate populations distribution

Larvae dispersal by hydrodynamic is crucial in the population dynamics and spatial distribution of fixed or poorly mobile organisms

Influence long-term spatial patterns and local inter-annual changes in benthic communities

Iroise sea and bay of Brest

- Iroise sea and bay of Brest
- Depth < 150m
- High tidal currents (up to 8 knots around Ushant islands during spring tide)
- River inputs in the bay of Brest : Aulne and Elorn

- Iroise sea and bay of Brest
 - High diversity of benthic species of commercial or ecological interest

P. maximus

O. edulis

M. varia

C. fornicata

O. nigra

C. gigas

• Strong fluctuations in populations distribution in the past decades : environmental and/or anthropic factors

Main objectives of the study: role of connectivity in benthic population dynamics

- What are the main connectivity patterns in Iroise sea ?
- Is there any seasonal and/or annual variability of these patterns ?
- Are there areas of preferential source or sink for larvae ?

biophysical modelling

Material and methods

MARS3D hydrodynamical model 100 Horizontal resolution : 250m Vertical resolution : 30 sigma layers ŝ Real tide forced, real river flows of 2 Elorn and Aulne, real meteorological forcing 2

-5.4

-5.2

50

4.4

-4.2

Tracer simulations

٠

٠

- Domain splitting : 30 areas ٠
- Passive tracers released instantaneously in the bottom layer of each area at ٠ the begining of simulation.
- Simulated period 2013-2018 ٠
- Monthly simulations : april september ٠

Results

Average connectivity matrix

Mean connectivity (10-day dispersal / April-September / 2013-2018)

Mean connectivity (30-day dispersal / April-September / 2013-2018)

30 days

Sources

Mean connectivity (10-day dispersal / April-September / 2013-2018)

Mean connectivity (30-day dispersal / April-September / 2013-2018)

30 days

Sources

Mean connectivity (10-day dispersal / April-September / 2013-2018)

Mean connectivity (30-day dispersal / April-September / 2013-2018)

30 days

Mean connectivity (10-day dispersal / April-September / 2013-2018)

Mean connectivity (30-day dispersal / April-September / 2013-2018)

30 days

Sources

Mean connectivity (10-day dispersal / April-September / 2013-2018)

Mean connectivity (30-day dispersal / April-September / 2013-2018)

30 days

Sources

Mean connectivity (10-day dispersal / April-September / 2013-2018)

Mean connectivity (30-day dispersal / April-September / 2013-2018)

30 days

Mean connectivity (10-day dispersal / April-September / 2013-2018)

Mean connectivity (30-day dispersal / April-September / 2013-2018)

30 days

Mean connectivity (10-day dispersal / April-September / 2013-2018)

Mean connectivity (30-day dispersal / April-September / 2013-2018)

30 days

Sources

Mean connectivity (10-day dispersal / April-September / 2013-2018)

Mean connectivity (30-day dispersal / April-September / 2013-2018)

30 days

Sources

Mean connectivity (10-day dispersal / April-September / 2013-2018)

Mean connectivity (30-day dispersal / April-September / 2013-2018)

30 days

Bay of Douarnenez → BoD (1, 2,3, 4), Crozon Peninsula (8), BoB entrance (13), Cental BoB (14), *Iroise sea*

Bay of Douarnenez → BoD (1, 2,3, 4), Crozon Peninsula (8), BoB entrance (13), Cental BoB (14), *Iroise sea* Crozon peninsula → BoB entrance (13), Central BoB (14), *Iroise sea (6, 8, 10, ...)* : HUB of

connectivity?

Bay of Douarnenez → BoD (1, 2,3, 4), Crozon Peninsula (8), BoB entrance (13), Cental BoB (14), *Iroise sea*

Crozon peninsula → BoB entrance (13), Central BoB (14) , *Iroise sea (6, 8, 10, ...)* : HUB of connectivity ?

Bay of Brest → BoB (14,15,16), BoB entrance (13), *Iroise sea (9, 12, 17,...)*

Mean connectivity (30-day dispersal / April-September / 2013-2018)

30 days

Mean connectivity (30-day dispersal / April-September / 2013-2018)

Annual connectivity patterns (April-September average)

30 days

Mean connectivity (30-day dispersal / April-September / 2013-2018)

Monthly connectivity patterns (2013-2018 average)

iMarCo2019, September 23-25, Aveiro, Portugal

30 days

30 days

Sources

20

25

10

8

25

20

5

Sinks 15

Monthly connectivity patterns (2013-2018 average)

Robust connectivity patterns

Circulation strongly influenced by tide currents

PCA on connectivity matrix

PCA on connectivity matrix

PCA on connectivity matrix

May 2018 situation

Absolute anomalies

Averaged May-Sept 2013-2018

May 2018 situation

September 2013 situation

Absolute anomalies

Absolute Anomalies (10-day dispersal - September 2013)

Averaged May-Sept 2013-2018

September 2013 situation

Averaged May-Sept 2013-2018

Oeei

18

Whid Speed

Wind direction Sept2013

Deet

HO 17

iMarCo2019, September 23-25, Aveiro, Portugal

August 2013 situation

Absolute anomalies

Absolute Anomalies (30-day dispersal - August 2013)

August 2013 situation

iMarCo2019, September 23-25, Aveiro, Portugal

-6
August 2013 situation

Absolute anomalies

Absolute Anomalies (30-day dispersal - August 2013)

- West/South-West wind > Bottom seaward currents
- Summer
 stratification >
 Tracers confined in
 bottom layers

(from Augris et al. 2005) iMarCo2019, September 23-25, Aveiro, Portugal

Surface

Bottom

Conclusions

Connectivity patterns are robust across seasons and years

Connectivity patterns can vary locally due to wind and summer stratification, especially in the bay of Douarnenez.

iMarCo2019, September 23-25, Aveiro, Portugal

Perspectives

- Generalizing analyses to better characterise variability due to environmental factors : wind speed and direction, stratification index, river flows, intensity of tides,...
- Defining and applying connectivity indices to characterise connectivities and their fluctuations (see Martin talk's of yesterday afternoon)
- Taking into account larvae vertical mouvements (Student master : I. Boudriga, 2017)
- Validating connectivity patterns against other data sources :
- Larvae recruitment on collectors in bay of Brest (2017-2019), MODELISME project
- Larvae distribution in space and time in the water column in bay of Brest and Iroise sea (using metabarcoding, LADIDA project, F. Nunes)
- Genetic data of great scallop population in Iroise sea (Phd W. Handal)

iMarCo2019, September 23-25, Aveiro, Portugal

II - Combining Larval Dispersal Modelling And Genetics To Characterise Population Connectivity Of A Reef-forming Invertebrate Along The French Atlantic Coast

Carmen David, <u>Martin P. Marzloff</u>, Philippe Cugier, Flavia Nunes, Stanislas Dubois

IFREMER, Coastal Ecosystem Dynamics Research unit (DYNECO)

Martin.Marzloff@ifremer.fr

Signature Street Street

AGENCE FRANÇAISE POUR LA BIODIVERSITÉ

ÉTABLISSEMENT PUBLIC DE L'ÉTAT

Honeycomb reef population connectivity Biological Model

The honeycomb worm Sabellaria alveolata Lamarck 1818 (Polychaeta: Sabellariidae)

Credits: S. Dubois & A. Guerin

Honeycomb reef population connectivity

- A common intertidal species
 (from Morocco to Southwest Scotland)
- High variability in shapes and local percentage cover

Spatial Distribution

Curd et al. (in prep.)

Honeycomb reef population connectivity Ecological Role and Conservation Status

ame place (2015

- An important engineering species that forms biogenic reefs High biodiversity + habitat provision + natural protection against coastal erosion
- Conservation issues (local decline due to trampling, extreme events...)

Honeycomb reef population connectivity Ecological Role and Conservation Status

• An important engineering species that forms biogenic reefs High biodiversity + habitat provision + natural protection against coastal erosion

• Conservation issues (i.e. local decline due to trampling, extreme events...)

Role of **connectivity** via larval dispersal in maintaining **resilience of**

(2) Local biogenic constructions

Honeycomb reef population connectivity An Hydrodynamic Dispersal Modelling Study

Characterise regional population connectivity along the French coastline (English Channel + Bay of Biscay)

- Mean connectivity
- Interannual and seasonal variability
- Confrontation with earlier genetics studies

Characterise local reef contribution to metapopulation

- Source Vs Sink metrics
- Network theory metrics
- Simulations of Alternative node removal scenarios

Honeycomb reef population connectivity

An Hydrodynamic Dispersal Modelling Study

HYDRODYNAMICS SIMULATION CHARACTERISTICS

• MARS3D = 3D Model for Applications at Regional Scale

(Lazure and Dumas, 2008)

- 2.5 km horizontal resolution, 40 vertical layers (sigma coord.)
- Eulerian approach
- Particule release in the bottom layer
- Variability due to influence of atmospheric, river and tidal inputs
 - Interannual = 5 years / 2012 2016
 - Seasonal = 6 months / April Sept.

LARVAL ECOLOGY

- No vertical behaviour
- 3 PLDs = 3, 4, 6 weeks

(Here all results based on 4-week PLD)

Honeycomb reef population connectivity

An Hydrodynamic Dispersal Modelling Study

Coastline divided into 60 zones

Maps of S. alveolata reefs

- Attribution of semi-quantitative scores to each zone
- Reef score estimated from expert knowledge
 - O for « no reef »
 - 0.25 / 0.5 / 0.75
 - 1 for « high cover of consolidated reefs »

Mean Connectivity Matrix

(Monthly mean / April-Sept. / 2012-2016 / 4-week PLD)

Mean Connectivity Matrix

(Monthly mean / April-Sept. / 2012-2016 / 4-week PLD)

Percentage of connectivity ⁴

Mean Connectivity Matrix

(Monthly mean / April-Sept. / 2012-2016 / 4-week PLD)

Percentage of connectivity ⁵⁰

Mean Connectivity Matrix

(Monthly mean / April-Sept. / 2012-2016 / 4-week PLD)

Percentage of connectivity ⁵³

Mean Connectivity Matrix

(Monthly mean / April-Sept. / 2012-2016 / 4-week PLD)

Percentage of connectivity ⁵¹

Mean Connectivity Matrix

(Monthly mean / April-Sept. / 2012-2016 / 4-week PLD)

Percentage of connectivity ⁵³

Mean Connectivity Matrix

(Monthly mean / April-Sept. / 2012-2016 / 4-week PLD)

Percentage of connectivity ⁵

PCA based on Monthly Connectivity Matrices

PCA based on Monthly Connectivity Matrices

PCA based on Monthly Connectivity Matrices

"Extreme" Monthly Connectivity Matrices

"Extreme" Monthly Connectivity Matrices

Honeycomb reef population connectivity Threshold for effective population connectivity

Considering 31 reef-suitable zones (based on expert knowledge)

Honeycomb reef population connectivity Threshold for effective population connectivity

Honeycomb reef population connectivity

Threshold for effective population connectivity

Contribution from Genetics

Honeycomb reef population connectivity

Threshold for effective population connectivity

HYDRODYNAMICS

versus

GENETICS

Frequency Of Haplotypes

Honeycomb reef population connectivity Threshold for effective population connectivity

Considering 31 reef-suitable zones (based on expert knowledge)

Honeycomb reef local connectivity

Zone-specific connectivity indices

- **Sink index** = Number of incoming connections
 - + Successful Incoming Transport (from all zones)
 - + Ratio Incoming / Outgoing Transport
 - + Rate of Retention (relative to Total Amount Released)
 - + Max. distance for incoming substance
- **Source index** = Number of outgoing connections
 - + Successful Outgoing Transport
 - + Ratio Outgoing / Incoming Transport
 - + Rate of Outflow (relative to total amount released)
 - + Max. distance for outgoing substance
 - Relative estimates (compared to highest score for each metric)

Honeycomb reef local connectivity Zone-specific connectivity indices

66

Honeycomb reef local connectivity Zone-specific connectivity indices

67

Honeycomb reef meta-population

Zone-specific contributions to network

Honeycomb reef meta-population

Zone-specific contributions to network

5 NODE REMOVAL SCENARIOS

Take-home messages

- Regional hydrodynamic connectivity
 - « stepping stone » regional connectivity
 - Marginal interannual/seasonal variability
- Honeycomb reef meta-population connectivity
 - Insights from combining genetics and hydrodynamics modellign
 - 2 main sub-populations: Bay of Biscay Vs English Channel
 - Betweeness centrality index as a reliable indicator of local contribution to network

• Generic approach

- Transposable to other intertidal species
- Combination of hydrodynamics modelling, field-based expert knowledge, genetics
- Perpectives Work in progress...
 - Formal genetics Vs Hydrodynamics statistical comparison
 - Accouting for larval behaviour? Survival? Succesful recruitment?

Thank you

Martin.Marzloff@ifremer.fr

The interdisciplinary graduate school for the blue planet.

AGENCE FRANÇAISE POUR LA BIODIVERSITÉ

ÉTABLISSEMENT PUBLIC DE L'ÉTAT

Thank you for your attention

This work was supported by ISblue project, Interdisciplinary graduate school for the blue planet (ANR-17-EURE-0015) and co-funded by a grant from the French government under the program "Investissements d'Avenir"

iMarCo2019, September 23-25, Aveiro, Portugal