#### Amédée 2021

#### Reconciling stock-assessment with MCMC Optimizing the new ICES WGNAS Atlantic Salmon stock-assessment model.





22 April 2021, remote



Rémi Patin Pierre-Yves Hernvann Marie Nevoux Maxime Olmos Etienne Rivot

# Atlantic Salmon population have been decreasing despite the reduction in fishing effort



# This might be explained by a decrease in survival at sea, linked to ecosystem changes





### ICES Questions tackled within the ICES Working Group CIEM on North Atlantic Salmon (WGNAS)

Studying 25 stock units across 3 complex group



### ICES Questions tackled within the ICES Working Group **CIEM** on North Atlantic Salmon (WGNAS)

3 complex group

Studying 25 stock units across Assessing compliance to conservation limits (i.e. min. egg deposition)

Providing catch advice for mixed sea fisheries



#### ICES Questions tackled within the ICES Working Group **CIEM** on North Atlantic Salmon (WGNAS) Studying 25 stock units across Assessing compliance to conservation limits 3 complex group (i.e. min. egg deposition) Currently: - 3 independant models Providing catch advice for - different demographic hypothesis mixed sea fisheries - no link between spawners and recruit RULRE Greenland Faroes NO.S Northern Lab Europe NFLD Southern Europe North America 4.

- Development of a **bayesian life cycle model** for Atlantic Salmon

Olmos et al. 2019, Olmos et al. 2020

- Stage-based model with key demographic transition explicitly modeled
- Solid base for further expansion (new data, different demographic hypotheses

- Development of a **bayesian life cycle model** for Atlantic Salmon

Olmos et al. 2019, Olmos et al. 2020

- Stage-based model with key demographic transition explicitly modeled
- Solid base for further expansion (new data, different demographic hypotheses
- A single model for 25 SU in 3 complex
  - Harmonized demographic hypotheses
  - Covariation in demographic parameters accross SU (survival, maturation)
  - Can study scenario simultaneously on multiple SU

- Development of a **bayesian life cycle model** for Atlantic Salmon

Olmos et al. 2019, Olmos et al. 2020

- Stage-based model with key demographic transition explicitly modeled
- Solid base for further expansion (new data, different demographic hypotheses
- A single model for 25 SU in 3 complex
  - Harmonized demographic hypotheses
  - Covariation in demographic parameters accross SU (survival, maturation)
  - Can study scenario simultaneously on multiple SU

#### - A new and simpler workflow for ICES WGNAS

- A single unified workflow for the 3 complex group
- Hindcasting and forecasting are done with the same model

#### Atlantic Salmon is an anadromous species Model represent the dynamic of 25 populations (SU) With two different life history possible (1SW vs 2SW)









Bayesian life-cycle models seem very appealing ... but:

Calculation time may be prohibitive (over days or weeks)

• Long calculation time make it difficult to use in a working group :

- data generally updated at the last moment

- model needs to be run, re-run, and results analysed, within a week

Bayesian life-cycle models seem very appealing ... but:

Calculation time may be prohibitive (over days or weeks)

• Long calculation time make it difficult to use in a working group :

- data generally updated at the last moment

- model needs to be run, re-run, and results analysed, within a week

### How to accelerate large bayesian life cycle model ?



Here model is run thanks to Nimble

https://r-nimble.org/

Why Nimble ?

- BUGS/JAGS-like language
- easy to customize samplers
- easy to simulate from the model

1. Measure Efficiency

(algorithmic vs computational)

Effective Sample Size (ESS) = number of independant samples in the posteriors Run time = Time spent running the MCMC algorithm Algorithmic efficiency = ESS/iteration of MCMC algorithm Computational efficiency = ESS/runtime

#### 1. Measure Efficiency

(algorithmic vs computational)

#### 2. Find and understand bottlenecks

(in algorithmic efficiency or model speed)

#### Bottleneck in algorithmic efficiency = nodes with lower ESS

**Bottleneck in model speed** = nodes very slow to update, large time spent in samplers

1. Measure Efficiency

(algorithmic vs computational)

- 2. Find and understand bottlenecks (in algorithmic efficiency or model speed)
- 3. Test and validate changes in model structure and/or MCMC algorithm

#### Does the changes increase computational efficiency?



Once a change is validated, **new bottlenecks may appear** and additionnal changes may be required

In practice with the Salmon life cycle model:

- base model had **stochastic transitions** for several stages:

$$N_4 = N_3 \times \theta_3 + \epsilon \rightarrow$$
 Very small random noise  
Survival  
(estimated for each year and SU)



#### **1st Assessment:** Computational efficiency/variable

In practice with the Salmon life cycle model:

- base model had **stochastic transitions** for several stages:

$$\mathsf{N}_4 = \mathsf{N}_3 \times \mathsf{\theta}_3 + \varepsilon$$

- **Deterministic transitions** decrease time to ESS from 48h to 22h for bottleneck variables (in a simplified model)

$$\mathsf{N}_4 = \mathsf{N}_3 \times \mathsf{\theta}_3 + \mathbf{\check{\varepsilon}}$$



# **2nd Assessment:** Time spent for each variable

### 3rd Assessment: Efficiency for one variable per SU

Median of efficiency accross node is not sufficient, some nodes are still badly estimated



In practice with the Salmon life cycle model:

- base model had **stochastic transitions** for several stages:

$$\mathsf{N}_4 = \mathsf{N}_3 \times \mathsf{\theta}_3 + \varepsilon$$

- **Deterministic transitions** decrease time to ESS from 48h to 22h for bottleneck variables (in a simplified model)

$$\mathsf{N}_4 = \mathsf{N}_3 \times \mathsf{\theta}_3 + \mathbf{\check{\varepsilon}}$$

- **Changed MCMC algorithm** to decrease sampling for smolt age distribution and increase sampling for 3 SU badly estimated.

# In Summary:

- Improvement from **48h** for weak results to **15h** for robust results (effective size > 1000)

 removed some stochastic transition and tweaked MCMC algorithm to increase/decrease sampling of some nodes

- Other potential solution : changing samplers, block sampling ...

# In Summary:

- Improvement from **48h** for weak results to **15h** for robust results (effective size > 1000)

 removed some stochastic transition and tweaked MCMC algorithm to increase/decrease sampling of some nodes

- Other potential solution : changing samplers, block sampling ...

### Take-home message:

- Analyze carefully **efficiency and speed** for the different model nodes
- validate changes with computational efficiency
- Patience, because several changes may be required

# In Summary:

- Improvement from **48h** for weak results to **15h** for robust results (effective size > 1000)

 removed some stochastic transition and tweaked MCMC algorithm to increase/decrease sampling of some nodes

- Other potential solution : changing samplers, block sampling ...

### Take-home message:

- Analyze carefully **efficiency and speed** for the different model nodes
- validate changes with computational efficiency
- Patience, because several changes may be required

# Thank you for your attention!