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Atlantic Salmon population have been 
decreasing despite the reduction in fishing effort



This might be explained by a decrease in survival 
at sea, linked to ecosystem changes



Questions tackled within the ICES Working Group 
on North Atlantic Salmon (WGNAS)
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Currently: - 3 independant models

- no link between spawners and recruit
- different demographic hypothesis

Questions tackled within the ICES Working Group 
on North Atlantic Salmon (WGNAS)



- Development of a bayesian life cycle model for Atlantic Salmon

Stage-based model with key demographic transition explicitly  modeled

Solid base for further expansion (new data, 
different demographic hypotheses
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- Development of a bayesian life cycle model for Atlantic Salmon

Stage-based model with key demographic transition explicitly  modeled

Solid base for further expansion (new data, 
different demographic hypotheses

Olmos et al. 2019, Olmos et al. 2020

- A single model for 25 SU in 3 complex
Harmonized demographic hypotheses

Covariation in demographic parameters accross SU (survival, maturation)

Can study scenario simultaneously on multiple SU

- A new and simpler workflow for ICES WGNAS

A single unified workflow for the 3 complex group

Hindcasting and forecasting are done with the same model
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Atlantic Salmon is an anadromous species
Model represent the dynamic of 25 populations (SU)
With two different life history possible (1SW vs 2SW)
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to  different migration route
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Bayesian life-cycle models seem very appealing ... but:

    Calculation time may be prohibitive (over days or weeks)

    Long calculation time make it difficult to use in a working 
group :       

- data generally updated at the last moment

- model needs to be run, re-run, and results analysed, 
within a week



How to accelerate large bayesian life cycle model ?

Here model is run thanks to Nimble 

https://r-nimble.org/

Why Nimble ?

- BUGS/JAGS-like language
- easy to customize samplers
- easy to simulate from the model

Bayesian life-cycle models seem very appealing ... but:

    Calculation time may be prohibitive (over days or weeks)

    Long calculation time make it difficult to use in a working 
group :       

- data generally updated at the last moment

- model needs to be run, re-run, and results analysed, 
within a week



Effective Sample Size (ESS) = number of independant  
                                                   samples in the posteriors

Algorithmic efficiency = ESS/iteration of MCMC algorithm

Computational efficiency = ESS/runtime

Run time  = Time spent running the MCMC algorithm

1. Measure Efficiency 
(algorithmic vs computational)

Workflow to optimize large bayesian MCMC life cycle 
models with Nimble
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Bottleneck in algorithmic efficiency = nodes with lower ESS

Bottleneck in model speed = nodes very slow to update, 
                                                   large time spent in samplers
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Workflow to optimize large bayesian MCMC life cycle 
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1. Measure Efficiency 
(algorithmic vs computational)

2. Find and understand bottlenecks 
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Does the changes increase computational efficiency?

3. Test and validate changes 
in model structure 
and/or MCMC algorithm

Workflow to optimize large bayesian MCMC life cycle 
models with Nimble



1. Measure Efficiency 
(algorithmic vs computational)

2. Find and understand bottlenecks 
(in algorithmic efficiency or model speed)

3. Test and validate changes 
in model structure 
and/or MCMC algorithm

Repeat 
steps 1-3

Once a change is validated, new bottlenecks may appear and 
additionnal changes may be required

Workflow to optimize large bayesian MCMC life cycle 
models with Nimble



In practice with the Salmon life cycle model:

- base model had stochastic transitions for several stages: 

N4 = N3 x θ3 + ε
Survival 
(estimated for each year and SU)

Very small random noise
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In practice with the Salmon life cycle model:

- base model had stochastic transitions for several stages: 

N4 = N3 x θ3 + ε

- Deterministic transitions decrease time to ESS from 48h to 
22h for bottleneck variables (in a simplified model)

N4 = N3 x θ3 + ε
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3rd Assessment: Efficiency for one variable per SU
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Median of efficiency accross node is not sufficient, 
some nodes are still badly estimated



In practice with the Salmon life cycle model:

- base model had stochastic transitions for several stages: 

N4 = N3 x θ3 + ε

- Deterministic transitions decrease time to ESS from 48h to 
22h for bottleneck variables (in a simplified model)

N4 = N3 x θ3 + ε

- Changed MCMC algorithm to decrease sampling for smolt age 
distribution and increase sampling for 3 SU badly estimated.



- Improvement from 48h for weak results to 15h for 
robust results (effective size > 1000)
- removed some stochastic transition and 
tweaked MCMC algorithm to increase/decrease 
sampling of some nodes

In Summary:

- Other potential solution : changing samplers, block 
sampling ...



- Analyze carefully efficiency and speed for the 
different model nodes
- validate changes with computational 
efficiency

Take-home message:

- Patience, because several changes may be required
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- Analyze carefully efficiency and speed for the 
different model nodes
- validate changes with computational 
efficiency

Take-home message:

- Patience, because several changes may be required

- Improvement from 48h for weak results to 15h for 
robust results (effective size > 1000)
- removed some stochastic transition and 
tweaked MCMC algorithm to increase/decrease 
sampling of some nodes

In Summary:

- Other potential solution : changing samplers, block 
sampling ...

Thank you for your attention!


