

AMÉDÉE Atelier méthode d'étude de la dynamique des exploitations halieutiques

AMÉDÉE Estival 2018 Centre Atlantique de l'Ifremer, Nantes, 12 July 2018.

An intermediate complexity food web model to explore fisheries management scenarios under climate change

Ricardo Oliveros-Ramos & Verena M. Trenkel

The Effects of Climate Change on the World's Oceans

4th International Symposium June 4-8, 2018 • Washington, DC

An intermediate complexity food web model to explore fisheries management scenarios under climate change

Ricardo Oliveros-Ramos & Verena M. Trenkel

Session 12: Scenarios and models to explore the future of marine coupled human-natural systems under climate change

AMÉDÉE Atelier méthode d'étude de la dynamique des exploitations halieutiques

AMÉDÉE Estival 2018 Centre Atlantique de l'Ifremer, Nantes, 12 July 2018.

An intermediate complexity food web model to explore fisheries management scenarios under climate change

Ricardo Oliveros-Ramos & Verena M. Trenkel

Why another model?

Is your model better than "that other model"?

"All models are wrong" George E.P. Box (1919 – 2013)

"Essentially, all models are wrong, but some are useful"

George E.P. Box (1919 – 2013)

"Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful"

George E.P. Box (1919 – 2013)

"Remember that all models are wrong; the practical question is **how wrong** do they have to be **to not be useful**"

George E.P. Box (1919 – 2013)

When a model is useful?

Why another model?

Is your model better than "that other model"?

PRIME TRADEOFFS: PRocess integration into Multispecies and Ecosystem Models for realistic evaluation of ecological, economic and social tradeoffs

- (i) How will the integration of environmentally-driven variability in recruitment and spatial distribution affect short-term predictions of economically important fish species?
- (ii) How will recruitment, growth, and spatial distributions of these species respond to longerterm projections of climate-driven change?
- (iii) How will the regional supply chain of fish and fishmeal products respond to longer-term projections of climate-driven change?
- (iv) How will tactical and strategic ecosystem-based advice best respond to these short- and longterm changes within the context of the reformed CFP and accounting for energy consumption and societal effects.

To develop a model for evaluating the impact of multiples pressures on marine communities, in particular those of fisheries and climate change related pressures.

- (i) Recruitment is a function of the environment.
- (ii) Everything is a function of the environment.Also, climate change inputs needed.
- (iii) Time variability in fishing forcing, or adaptative MP.
- (iv) Trophic web model, including humans.

Développement d'un modèle tropho-economique de complexité intermédiaire pour l'évaluation intégrée et la gestion des pêcheries du golfe de Gascogne

Scenarios and models to explore the future of marine coupled human-natural systems under climate change Scenarios and models to explore the future of marine coupled human-natural systems under climate change

Human-natural systems are structured around complex social, economic and ecological interactions

Climate change itself is related to complex socio-economic interactions

Marine ecosystems dynamics is too.

Introduction

Marine ecosystem models can be used for climate change impact studies.

Fishing scenarios are usually very simple (e.g. "business as usual"), mainly due to technical limitations.

- Simplified dynamics, focus on fisheries
- Formal parameter estimation (data driven)
- Detailed management and fishing scenarios for tactical decisions (e.g TAC estimation)

- Complex dynamics, focus on ecological interactions
- No formal parameter estimation (process driven)
- Very simple fishing scenarios, improve understanding.

Models of Intermediate Complexity for Ecosystem assessments (MICE)

- Parameter estimation

- Fisheries data
- Tactical issues
- Complex fishing strategies
- Question driven
- Only main ecological relationships
- Reduction of complexity: Functional groups

OBJECTIVE:

Develop a MICE to explore the links between functional groups, fleets and environmental variables

- Age based dynamics (quarter time step)
- N: Abundance by functional group and age (state variable).

Exponential survival model

 $N_{s,a+1}(t+\Delta t) = N_{s,a}(t) \exp(-Z_{s,a}(t)\Delta t)$

Z = M + F

Natural mortality is identified by taking into account predation from all accesible predators.

prey accesibility ~ f(size ratios, group traits)

empirical relationships using stomach content data (DAPSTOM, ICES, Barnes et al. 2008)

Multiple fleets targeting several function groups

Recruitment model

 $N_{s,0}(t+\Delta t) = R(SSB_s(t), ENVIRONMENT)$

Different recruitment models to deal with several life histories

Case study: Bay of Biscay

Case study: Bay of Biscay

Case study: Bay of Biscay

Initial Parameterization

- Environmental scenarios (4): 4 RCPs CMIP5
- Fishing scenarios (2):
 - Statu quo
 - Zero fishing

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-209 Manuscript under review for journal Geosci. Model Dev. Discussion started: 6 October 2017 © Author(s) 2017. CC BY 4.0 License. Geoscientific Model Development Discussions

16.5 SST 16.0 15.5 15.0 14.5 14.0 NPP 200 150 100 2020 2040 2060 2080 2100

> RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0

Derek P. Tittensor^{1,2}, Tyler D. Eddy^{2,3}, Heike K. Lotze², Eric D. Galbraith^{4,5}, William Cheung³, Manuel Barange^{6,7}, Julia L. Blanchard⁸, Laurent Bopp⁹, Andrea Bryndum-Buchholz², Matthias Büchner¹⁰, Catherine Bulman¹¹, David A. Carozza¹², Villy Christensen¹³, Marta Coll^{14,15}, John P. Dunne¹⁶, Jose A. Fernandes^{7,17}, Elizabeth A. Fulton^{11,18}, Alistair J. Hobday^{11,18}, Veronika Huber¹⁰, Simon Jennings^{19,20,21}, Miranda Jones³, Patrick Lehodey²², Jason S. Link²³, Steve Mackinson¹⁹, Olivier Maury^{24,25}, Susa Niiranen²⁶, Ricardo Oliveros-Ramos²⁷, Tilla Roy^{9,28}, Jacob Schewe¹⁰, Yunne-Jai Shin^{25,29}, Charles A. Stock¹⁶, Philip J. Underwood¹, Jan Volkholz¹⁰, James R. Watson²⁶, Nicola D. Walker¹⁹

Total consumer biomass

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

2080-2100

- Environmental scenarios (4): 4 RCPs CMIP5
- Fishing scenarios (41):
 - Several multipliers of current effort distribution between fleets: from 0 to 2 in steps of 0.05.

Total consumer biomass

Total consumer biomass

2.5

2.0

1.5

1.0

0.5

Biomass (million tonnes)

Total consumer biomass

٠

Fishing multiplier

RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

- Environmental scenarios (4): 4 RCPs CMIP5
- Fishing scenarios (6561):
 - Each fleet is affected by three multipliers: 0 (closure), 0.75 or 1.25
 - All combinations are considered (3^8=6561)

IT'S NOT ONLY ABOUT FISHING LESS BUT FISHING DIFFERENT

- Environmental scenarios (4): 4 RCPs CMIP5
- Fishing scenarios:
 - Dynamic allocation of effort
 - The probability of a vessel to remain in the same fleet is a function of the net rent of the fleet.
 - If net rent decreases, probability to change fleet increases. Transition matrix is updated every year.
 - Possible scenarios:
 - (i) total number of vessels remains fixed (no vessels leaves the system),
 - (ii) fleet dynamics, vessels enter and left the system.

PERSPECTIVES

Conclusions

- No-fishing and business as usual may not cover the full range of variability related to fishing.
- Fishing less but fishing different: the importance to explore MANAGEMENT SCENARIOS (e.g. effort reallocation) as adaptation to climate change.

- Long term vs. Short term strategies
- Importance of developing fishing management scenarios for impact applications
- Strategies robust to climate change

How to run the model?

runMICE {mice}

Run a simulation of the MICE model

Description

Run a simulation of the MICE model

Usage

```
runMICE(groups, fleets, environment = NULL, T, ndtPerYear = 4,
Mstarv = 0.3, Ystar = 3.5, delta = 0.9, par = NULL, Fmult = 1,
prices = NULL, niter = 7, verbose = TRUE)
```

Arguments

groups	A list containing the information to create the functional groups. See details.
fleets	A list containing the information to create the fleets. See details.
environment	A list containing the environmental information. One value per time step is required.
ndtPerYear	Number of time steps per year.
Mstarv	Maximum starvation mortality.
Ystar	Optimal annual food ration per gram of biomass.
delta	Fraction of prey population available to predators.
par	A list with parameters values. These parameters take precedence over 'groups' and 'fleets'
Fmult	Fishing multiplier. All the fishing mortalities are multiplied by this value.
niter	Number of iterations for the calculation of predation mortality.
verbose	Logical, should running messages be produced?

Value

A list with the abundance (N), length (L) and biomass (B) of all the species modeled.

R Documentation

http://www.rcpp.org/

How to run the model?

🕞 33 commits	ဖို 1 branch	🛇 0 releases	🎎 1 contributor			
ranch: master 👻 New pull request		Create new fil	e Upload files	Find file	Clone or download	
roliveros-ramos badges			Late	est commit 7	7c70739 10 seconds ago	
R	Rcpp's getStartM				2 months ago	
data	predation trait based model		3 months ago			
man	Updated manual page for runMICE.		2 months ago			
src	Rcpp's getStartM				2 months ago	
Rbuildignore	Package skeleton				8 months ago	
gitignore	predation trait based model				3 months ago	
DESCRIPTION	Added Rcpp to Imports.				2 months ago	
NAMESPACE	updated NAMESPACE using Rcpp.				2 months ago	
README.md	badges				just now	
卿 README.md						

How to run the model?

Package dependencies: Rcpp (>= 0.12.0), stats, graphics, qgam

Acknowledgments

PRIME TRADEOFFS

Thanks!