

Integrated Multi-Trophic Co-cultivation of finfish filter & deposit feeders: a promising system for the Greek aquaculture sector

Dr. E. Cotou **HCMR**

l'aquaculture multi trophique intégrée

Breizh'ala

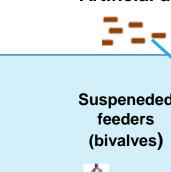
Background

The Strategy for Sustainable Development of European Aquaculture (CEC, 2002)

- to increase the production and the diversification
- to increase the product quality
- to improve the competitive position of the sector
- to promote environmental, economic and social sustainability.

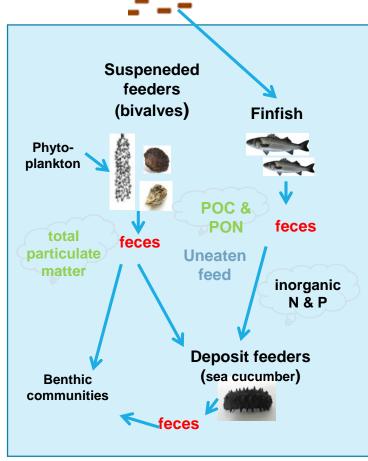
Despite possessing a large finfish aquaculture network and important finfish production in the Mediterranean area and EU, Greece has not developed any IMTA system near/or at commercial scale yet.

The co-cultivation of the European sea bass, with filter- & deposit – feeders is a case study of the Integrated MultiTrophic Aquaculture for EFFiciency and Environmental ConservaTion (IMTA-EFFECT) project, in the framework of the ERA-NETs, COFASP 2nd call.



Concept

Artificial diet



Selection of species

Finfish

Dicentrarchous labrax

Mytilus galloprovincialis

Ostrea edulis

Crassostrea gigas

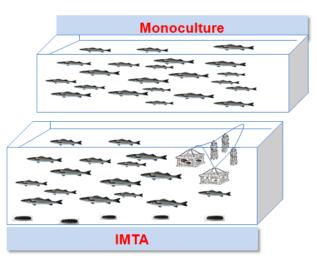
Deposit feeders

Holothuria poli

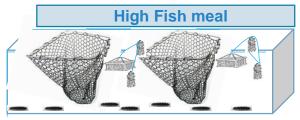
Holothuria sanctori

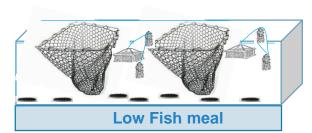
Holothuria tubulosa

Experimental Design



15 et 16 mai 2019


2 kg / m³



Duplicate concrete tanks of 15 m³ each with a flow rate of 980-1200 I/h located at the coast

Experiment 2 (spring 18)

0.5 kg/m³

- Dicentrarchus labrax:

- Mytilus galloprovincialis:

- Crassostrea gigas:

- Ostrea edulis:

- Holothuria tubulosa:

- Holothuria sanctori or poli:

200 fish/tank (1) or 30 fish/net (2)

300/tank (1), or 200/tank (2)

20/tank (1) or 20/tank (2)

20/tank (1)

10/tank (1) or 5/tank (2)

10/tank (1) or 5/tank (2)

Commercial fish feeds

Composition of fish feeds

H-Fish meal (%)	L-Fish meal (%)
-----------------	-----------------

Fish meal	30	20
Fish oil	12	11/
Plant meal	45	48
Plant oil	0	6
Gluten	10	5
Hemoglobin	0	5
Mineral/Vit	3	5
	100	100

Growth performance indicators of fish

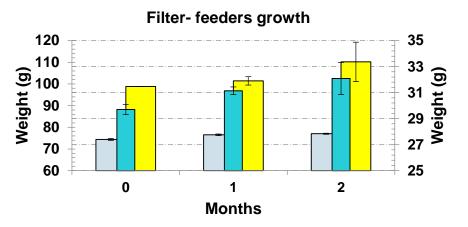
CA	AGRO MPUS	1
	OUEST	DE L'ALIVENTATION AU CADRE DE VIE

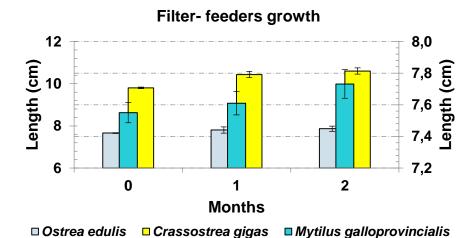
	Survival (%)	WG (g)	DWG (g/day)	SGR (%/day)	FCR (g/g)
Monoculture	93,35 ± 0,95	54,48 ± 1,81	0,92 ± 0,03	0,53 ± 0,01	1,82 ± 0,10
IMTA	92,65 ± 0,25	56,34 ± 0,42	0,95 ± 0,01	0,55 ± 0,003	1,49 ± 0,03 *

High F	Fish	meal
--------	------	------

$$0,41 \pm 0,01$$

Growth performance indicators of filter feeders



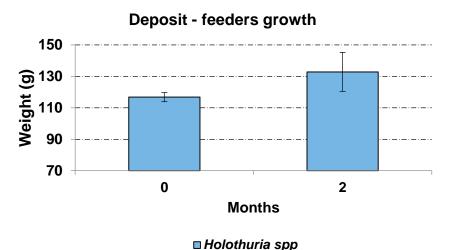


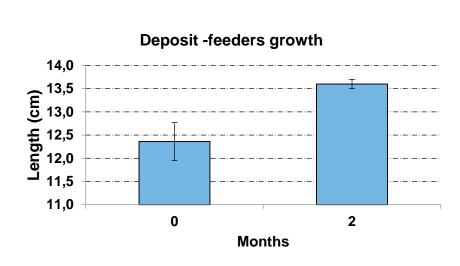
15 et 16 mai 2019

□ Ostrea edulis □ Crassostrea gigas □ Mytilus galloprovincialis

	High Fish meal		Low Fis	h meal
Oysters	<u>Initial</u>	Final 1	Initial	Final 1
Shell length (cm)	9,9 ± 0,7	11,3 ± 0,9	9,9 ± 0,7	11,4 ± 0,8
Weight (g)	95,3 ± 0,3	96, 5 ± 0,2	96,1 ± 0,1	97,3 ± 0,3
BCI (%)	5,9 ± 0,1	$7,4 \pm 0,2$	5,7 ± 0,4	$7,7 \pm 0,4$
	I			
Mussels				
Shell length (cm)	7,6 ± 0,2	$7,6 \pm 0,4$	7,4 ± 0,5	$7,4 \pm 0,5$
Weight (g)	30,9 ± 5,0	34,8 ± 5,1	29,2 ± 6,3	34,5 ± 6,0
BCI (%)	19,2 ± 0,2	25,8 ± 0,4	19,5 ± 0,3	25,5 ± 0,4

Growth performance indicators of deposit feeders





15 et 16 mai 2019

High Fish meal | Low Fish meal

Holothuria tubulosa

Initial weight ((g)
------------------	-----

Final weight (g)

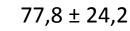
WG (g)

167,7 ± 13,7	154,0 ± 18,9
10 , , , 10 , ,	10.70 = 10,5

166,75 ± 7,01

19,4 12,7

Holothuria poli


Initial weight (g)

Final weight (g)

WG (g)

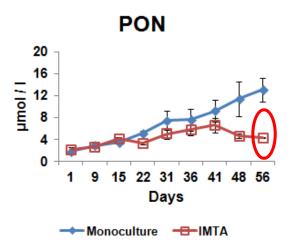
93,05	±	12.9
23,03	÷	12,5

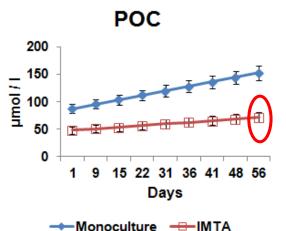
4,8

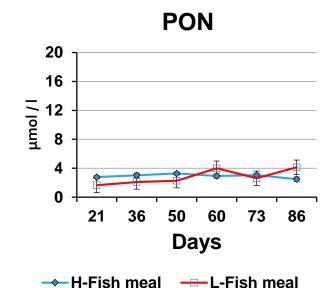
 $80,9 \pm 52,4$

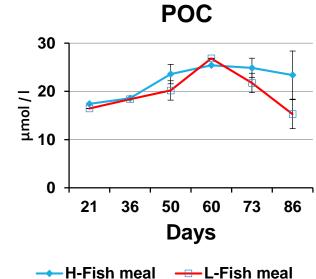
3,2

Environmental parameters

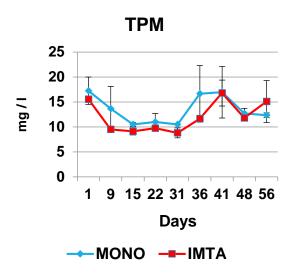


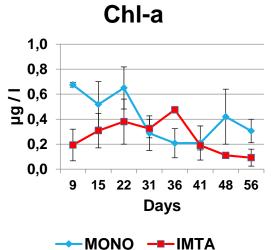


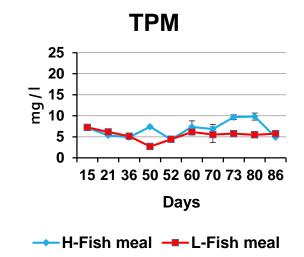


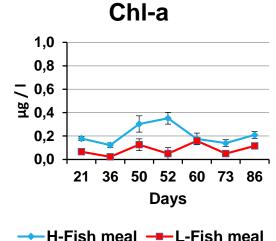


Environmental parameters

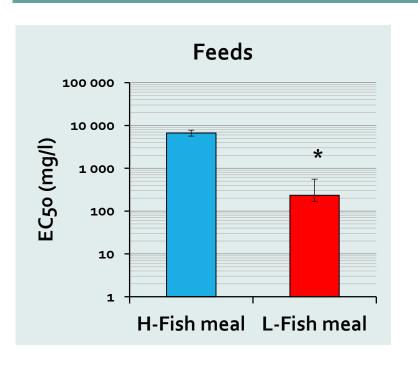


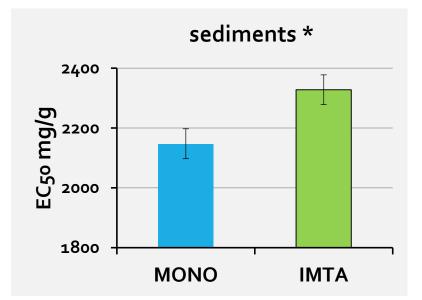


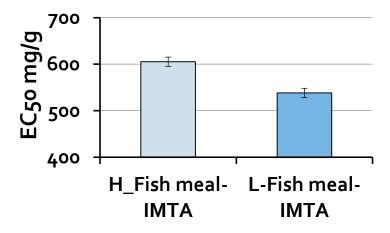




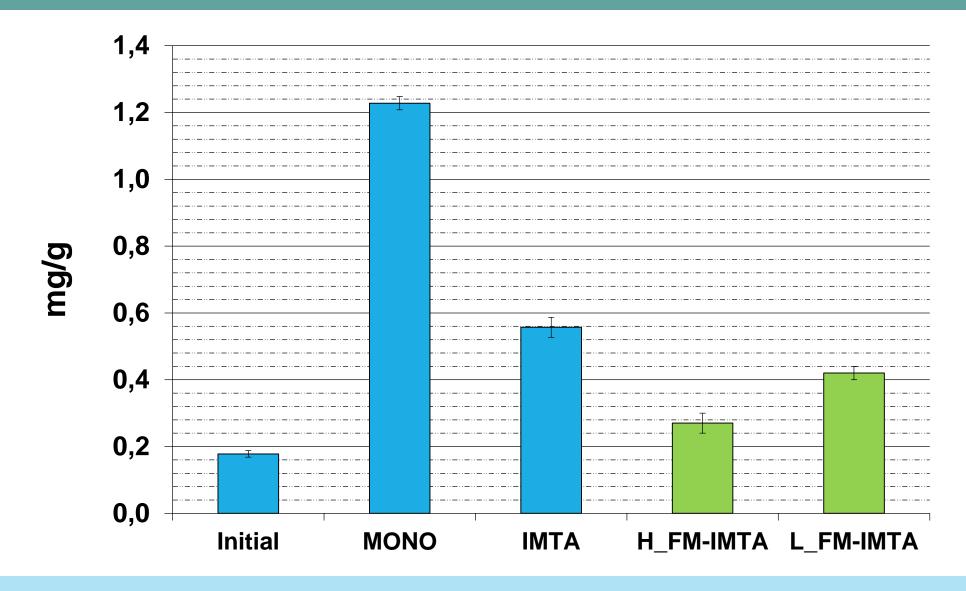
Toxicity in feeds & sediments *







Total lipids in sediments *

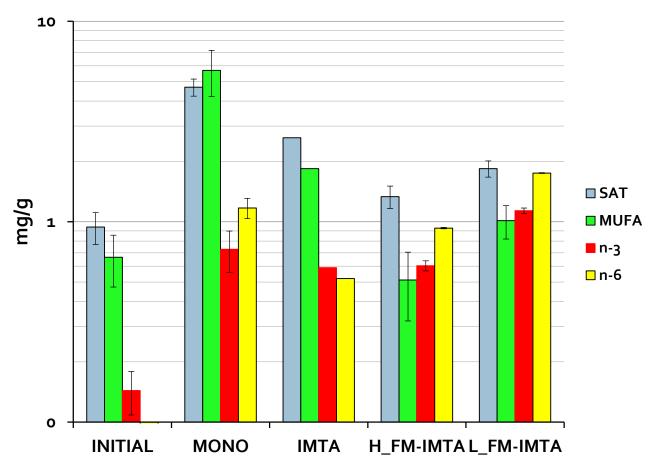


15 et 16 mai 2019

Avec la participation de :

Fatty acids profiles in sediments *

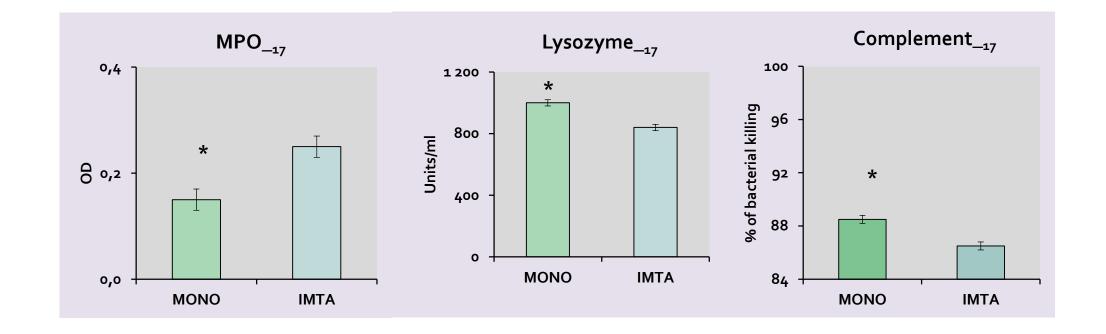
AGRO MPUS	
OUEST	DE L'ALIMENTATION AU CAORE DE VIE



mg/g	INITIAL	MONO	IMTA
SATURATED			
14:0	0,19 ± 0,05	0,69 ± 0,05	0.37 ± 0.10
15:0	0.00 ± 0.00	0,09 ± 0,02	0.06 ± 0.01
16:0	0,60 ± 0,09	2,84 ± 0,31	1,55 ± 0,36
17:0	0.00 ± 0.00	0,05 ± 0,01	0.06 ± 0.03
18:0	$0,11 \pm 0,03$	0,67 ± 0,02	$0,36 \pm 0,08$
20:0	0.00 ± 0.00	0,10 ± 0,02	0.04 ± 0.01
22:0	0.04 ± 0.00	$0,12 \pm 0,02$	0.07 ± 0.01
24:0	0.00 ± 0.00	0,13 ± 0,01	$0,09 \pm 0,02$
Sum SAT	0,94 ± 0,12 1,2	4,69 ± 0,46 1,2	2,62 ± 0,60
MUFA			
16:1n-9	0.07 ± 0.01	0.04 ± 0.02	$0,02 \pm 0,01$
16:1n-7	0,35 ± 0,14	0.78 ± 0.04	$0,41 \pm 0,05$
17:1n-9	0.04 ± 0.02	0.00 ± 0.00	$0,00 \pm 0,00$
18:1n-9	$0,10 \pm 0,02$	2,53 ± 0,58	$0,63 \pm 0,03$
18:1n-7	$0,11 \pm 0,00$	0,91 ± 0,27	0,49 ± 0,11
20:1n-11	0.00 ± 0.00	0,05 ± 0,03	0.04 ± 0.03
20:1n-9	0.00 ± 0.00	0,48 ± 0,17	$0,10 \pm 0,01$
20:1n-7	0.00 ± 0.00	0,03 ± 0,01	$0,02 \pm 0,00$
22:1n-11	0.00 ± 0.00	0,64 ± 0,27	$0,10 \pm 0,00$
22:1n-9	0.00 ± 0.00	0,08 ± 0,05	$0,01 \pm 0,00$
24:1n-9	0.00 ± 0.00	0,14 ± 0,04	0.03 ± 0.00
Sum MUFA	0,66 ± 0,14 1,2	5,69 ± 1,47	1,84 ± 0,15 1,3
n-3			
18:3n-3	0.00 ± 0.00	0,22 ± 0,02	$0,21 \pm 0,14$
18:4n-3	0.00 ± 0.00	0,08 ± 0,03	0.05 ± 0.03
20:5n-3 (EPA)	$0,13 \pm 0,03$	$0,27 \pm 0,10$	$0,27 \pm 0,17$
22:6n-3 (DHA)	0.02 ± 0.00	0,16 ± 0,03	$0,06 \pm 0,03$
Sum n-3	0,14 ± 0,04 1,2	0,73 ± 0,17	$0,59 \pm 0,37$
n-6			
18:2n-6	0.00 ± 0.00	1,06 ± 0,10	0.35 ± 0.06
20:4n-6 (ARA)	0.04 ± 0.01	$0,11 \pm 0,04$	$0,17 \pm 0,11$
Sum n-6	0,04 ± 0,01 1,2	1,17 ± 0,06 2,3	0,52 ± 0,17

Associer les espèces pour une aquaculture durable : l'aquaculture multi trophique intégrée

Fish health status



Conclusion

15 et 16 mai 2019

- Growth Performance Indicators of finfish such as SGR and FCR
- Growth of filter & deposit feeders
- Environmental variables including PON and POC, total lipids and fatty acids profile in sediment

are showed to be promising

- to manage culture system by-products,
- to increase feed efficiency that lower the production cost

and achieving economic viability and environmental quality through diversification of different trophic levels.

15 et 16 mai 2019

Thank you for your attention

http:www6.inra.fr/imta-effect ecotou@hcmr.gr

