The trophic Amplification revealed : an Inter-model comparison study

Vianney GUIBOURD de LUZINAIS 22th April 2021 Master student in fisheries science, Agro-Halieut Agrocampus Ouest & Vetagro-Sup

Supervisors: Pr. Didier GASCUEL, Dr. Hubert du PONTAVICE Co Supervisor : Dr. Gabriel REYGONDEAU Virginie BORNAREL Colaboration : Pr. William CHEUNG

Introduction	Part 1	Part 2	Part 3	Conclusion		
Climate change effects on marine food web						
Global mean sea	surface temperature					

Sea temperature increase

Introduction	Part 1	Part 2	Part 3	Conclusion

Scientific question: repercussions/consequences of climate—induced NPP changes on biomass?

• What will be the temporal dynamics and spatial distribution of biomass responses?

Introduction	Part 1	Part 2	Part 3	Conclusion

Scientific question: repercussions/consequences of climate-induced NPP changes on biomass?

- What will be the temporal dynamics and spatial distribution of biomass responses?
- How are biomass responses driven by climate change?

Introduction	Part 1	Part 2	Part 3	Conclusion

Scientific question: repercussions/consequences of climate-induced NPP changes on biomass?

- What will be the temporal dynamics and spatial distribution of biomass responses?
- How are biomass responses driven by climate change?
- What are the processes at stake along the food web?

Scientific question: repercussions/consequences of climate–induced NPP changes on biomass?

- What will be the temporal dynamics and spatial distribution of biomass responses?
- How are biomass responses driven by climate change?
- What are the processes at stake along the food web?

Challenges

- Ecological : Changes in ecosystem structure & functioning
- Fisheries : Impact on catch potential

What will be the temporal dynamics and spatial distribution of biomass responses?

Introduction	Part 1	Part 2	Part 3	Conclusion
Material & Method	Temporal dynamic	s and spatial distribution	of biomass responses	
2 climate models (Ear	rth System Models	5)		
NPP	Temperature			

- IPSL
- GFDL

2090-2099 relative to 1986-2005

Introduction	Part 1	Part 2	Part 3	Conclusion
Material & Method	Temporal dynamics	and spatial distributi	on of biomass respon	ses
2 climatic models (Ea NPP	arth System Model Temperature	s)	 Variable complexity and ✓ Biological processe ✓ Representation of I 	ecological approach: es represented biota
7 marine ecosy Consumer	ystem models biomass (TL>2)		 ✓ Interaction with env 	vironment
Trophodynamic model (EcoOcean) Species groups	Species distributi DBEM Shift in dis	on model Size (Mac DBP (Mac DBP (Mac DBP (Mac DBP (Mac DBP (Mac DBP (Mac DBP (Mac DBP (Mac DBP (Mac DBP (Mac DBP (Mac DBP (Mac DBP)) (Mac (Mac DBP)) (Mac (Mac (Mac (Mac)) (Mac (Mac)) (Mac)) (Mac)(Mac)(Mac)(Mac)(Mac)(Mac)(Mac)(Mac)	-structure model roecological & BOATS et M)	Trophic level-based model corrophic

Temporal dynamics and spatial distribution of biomass responses

Result 1 Temporal dynamics

- Loss of primary production
- Greater loss of consumer biomass
- IPSL : -10% NPP change
 → Total consumer biomass change
 ∈ [-15%; -35%]

Biomass and NPP relative change relative to 1986-2005

Temporal dynamics and spatial distribution of biomass responses

Result 1 Temporal dynamics

- Loss of primary production
- Greater loss of consumer biomass
- IPSL : -10% NPP change
 → Total consumer biomass change
 ∈ [-15%; -35%]
- GFDL : no global NPP change

Introduction Part 1 Part 2 Part 3 Conclusion

Temporal dynamics and spatial distribution of biomass responses

Result 1 Temporal dynamics

- Loss of primary production
- Greater loss of consumer biomass
- IPSL : -10% NPP change
 → Total consumer biomass change
 ∈ [-15%; -35%]
- GFDL : no global NPP change

Biomass and NPP relative change relative to 1986-2005

Amédée 22th April 2021

Introduction	Part 1	Part 2	Part 3	Conclusion

Temporal dynamics and spatial distribution of biomass responses

Different ecological responses over space

- Mainly three types:
 - Negative amplification
 - Negative attenuation
 - Negative inversion

Biomass responses types distribution over 2090s relative to 1986-2005

Vianney GUIBOURD de LUZINAIS

Introduction	Part 1	Part 2	Part 3	Conclusion
	Temporal dynamic	s and spatial distribution of k	piomass responses	

Result 2

Different ecological responses over space

- Mainly three types:
 - Negative amplification
 - Negative attenuation
 - Negative inversion
- Inter-marine ecosystem models variability

Biomass responses types distribution over 2090s relative to 1986-2005

Vianney GUIBOURD de LUZINAIS

Introduction	Part 1	Part 2	Part 3	Conclusion
Material & Method	Temporal dynamic	s and spatial distribution of	biomass responses	

- Select cells with more than 4 given values
- Fixing threshold value for agreement to 4

Introduction	Part 1	Part 2	Part 3	Conclusion
	Temporal dynamics an	d spatial distribution of b	iomass responses	IPSL RCP8 5
Result 3 Consistent re ecosystem m	esponse over space an odels	nong		Ner 0.5
 55.6% of negative ampl ➢ NPP decrease ➢ Biomass decrease > Consistent for ≥ 4 ecos 	ification (red) : > NPP decrease system model	501 501 501 601 601 601 601 601 601 601 601 601 6		1.3% 10.2% 2.9%
 25.6% of negative inver NPP increase ➢ Biomass decrease <i>Consistent for</i> ≥ 4 ecos 	sion (blue) :		V O 20E 40E 60E 10TE 10TE 10TE 10TE 10TE	4.3% 0.1%
		Types of agreements	Negative amplification Negative attenuation	Positive inversionPositive attenuation
			Negative inversion	No agreement

MEMs biomass responses types agreement distribution over 2090s relative to 1986-2005

Positive amplification

How are biomass responses driven by climate change?

Temperature effect biomass responses

• Analyse the relationship between sea temperature and ratio of consumer biomass change and NPP change:

 $R_i = \frac{Total \ consumer \ biomass \ change_i}{Net \ Primary \ Production \ change_i}$

Temperature effect biomass responses

• Analyse the relationship between sea temperature and ratio of consumer biomass change and NPP change:

 $R_i = \frac{Total \ consumer \ biomass \ change_i}{Net \ Primary \ Production \ change_i}$

Focus on areas where NPP decrease between 2006 & 2099

Temperature effect biomass responses

• Analyse the relationship between sea temperature and ratio of consumer biomass change and NPP change:

 $R_i = \frac{Total \ consumer \ biomass \ change_i}{Net \ Primary \ Production \ change_i}$

- Focus on areas where NPP decrease between 2006 & 2099
- \blacktriangleright Per MEM, per + Δ 0.1 SST, R_i mean with associate standard error

Introduction	Part 1	Part 2	Part 3	Conclusion
		Biomass responses of	driven by climate change	

Result 4 Temperature effect on trophic amplification at the end of

the 21st century

• Temperature thresholds

Focus on EcoTroph

Focus on EcoTroph

1. Where does trophic amplification stand: production vs biomass?

Focus on EcoTroph

- 1. Where does trophic amplification stand: production vs biomass?
- 2. How does trophic amplification in production propagate along the food web?

Introduction	Part 1	Part 2	Part 3	Conclusion
			Trophic amplificatio	n performs along the food web
Result 5 Where doe	s trophic amplification	stand: production vs	biomass?	IPSL
Decrease in production 11% NPP decrease	and even more in bion	nass (%) 0- -5- .L -10- 90-20-		RCP8.5
26% total consumer pro	omass decrease	ey -30 -35 -40 -40 -1950	0 1970 1990 2010 2 Ye	030 2050 2070 2090 ar
		P	roduction vs bioma amplificatio	ss impact on trophic on process
		Change in percent of: -	Total consumers biomas	ss — Total consumers production
		Consumers biomass char by trophic level	nge 2 3 4 5	 Net Primary Production

Introduction	Part 1	Part 2	Part 3	Conclusion
Result 5 Where does	strophic amplification	stand: production vs	Trophic amplification biomass?	on performs along the food web
Decrease in production	and even more in bior	mass $\widehat{\otimes} \begin{array}{c} 10\\5\\-5\\-5\\-5\\-10\end{array}$		IPSL RCP8.5
11% NPP decrease 16% total consumer pro 26% total consumer bio	duction decrease mass decrease	-15- -20- -25- -30- -35- -40-		
\rightarrow Major role of produc	tion/biomass conversi	on 1950	0 1970 1990 2010 2	2030 2050 2070 2090
$P_{\tau} = B\tau \times$	K_{τ}	Pi	Ye roduction vs bioma amplificati	ear ass impact on trophic on process
With P_{τ} the production o B_{τ} the biomass of a K_{τ} the flow kinetic a	an trophic level an trophic level c at an trophic level	Change in percent of: Consumers biomass chan by trophic level	Total consumers biomange 2 3 4 5	 Total consumers production Net Primary Production
Amédée 22 th April 2021	V	ianney GUIBOURD de LUZINAIS		17/23

Introduction	Part 1	Part 2	Part 3	Conclusion

Trophic amplification performs along the food web

Result 5 How does trophic amplification in production propagate along the food web?

Decrease in production along the trophic chain

11% NPP decrease15% Prey production decrease20% Predator production decrease30% Predator biomass decrease

Trophic amplification propagation along the food web

Trophic amplification performs along the food web

Result 5

How does trophic amplification propagate along the food web?

- (1) Temperature induced decrease in transfer efficiency
- (2) Kinetic affected by the temperature increasing
- \rightarrow Amplification of NPP decrease
- \rightarrow Compensation of NPP increase

Trophic amplification performs along the food web

Result 5

How does trophic amplification propagate along the food web?

- (1) Temperature induced decrease in transfer efficiency
- (2) Kinetic affected by the temperature increasing
- (3) Increase in the TE of low trophic levels

 At global scale, decrease of total consumer biomass much larger than the decrease in NPP, is expected throughout the 21st century

Total consumer biomass change near 3x NPP change

- At global scale, decrease of total consumer biomass much larger than the decrease in NPP, is expected throughout the 21st century
- But different reaction process at local scale (ecosystem)

Projection of 55.6% and 25.6% ocean surface for negative amplification and negative inversion, respectively

Introduction Part 1 Part 2 Part 3 Conclusion

Summary

- At global scale, decrease of total consumer biomass much larger than the decrease in NPP, is expected throughout the 21st century
- But different reaction process at local scale (ecosystem)
- Consistent patterns of biomass responses across MEMs

Projection agreement of biomass responses type over 90% of ocean surface

Introduction Part 1 Part 2 Part 3 Conclusion

Summary

- At global scale, decrease of total consumer biomass much larger than the decrease in NPP, is expected throughout the 21st century
- But different reaction process at local scale (ecosystem)
- Consistent trophic amplification across 3 MEMs
- Process getting stronger and stronger by going up in trophic levels

- 1. New generation of Earth System Models
 - Better constraint of NPP and secondary production projection
 - > Consider other stressors such as the acidification and reduction in dissolved oxygen

- 1. New generation of Earth System Models
 - Better constraint of NPP and secondary production projection
 - > Consider other stressors such as the acidification and reduction in dissolved oxygen
- 2. Better understand of processes in each Marine Ecosystems Models
 - > DBEM does not account for trophic interaction
 - EcoOcean do not directly account for ocean temperature change

Study consequences of trophic amplification induced ecosystem structure change on :

• On Ecosystems health and stability

Next Steps

Study consequences of trophic amplification induced ecosystem structure change on :

- On Ecosystems health and stability
- On potential fisheries catches
 - > Most of species with a trophic level above 3.5 are targeted ...
- On human

project less catches where country depend most of ocean resources

Current study (PhD)

PhD on Marine heatwaves (MHW) :

What will be the projected effects of MHWs added to climate change on marine ecosystems functioning and stability?

Exact PhD tittle:

Climate change, food webs, and fishery resources: dynamic modeling of the impact of extreme events such as marine heatwaves.

Thank you for your attention